
Protecting Frequent Patterns using Distributed
Security on M-Clouds

K.H.Shabbeer Basha1
PG Scholar, Dept. of Computer Science & Engineering

Madanapalle Institute of Technology & Science
Madanapalle, Andhra Pradesh, India

E .Madhusudhana Reddy2
 Professor, Dept. of CSE

Madanapalle Institute of Technology & Science
Madanapalle, Andhra pradesh, India

Abstract— As the age of big data evolves, outsourcing
of data mining tasks to multi-cloud environments has
become a popular trend. To ensure the data privacy in
outsourcing of mining tasks, the concept of support
anonymity was proposed to hide sensitive information
about patterns. Existing methods that tackle the privacy
issues, however, do not address the related parallel
mining techniques. To fill this gap, we refer to a pseudo-
taxonomy based technique, called as k-support
anonymity, and improve it into multi-cloud
environments with secrete sharing scheme. This has
several advantages. First, outsourcing to multi-cloud
environments can meet the requirement of great
computational resources in big data mining, and also
parallelize the mining tasks for better efficiency.
Second, the data that we send out to a cloud can be
partial. An assaulter who gets the data in one cloud can
never re-construct the original data. That means it is
more difficult for an assailant to violate the privacy in
outsourced data. Experimental results also
demonstrated that our approaches can achieve good
protection and better computation efficiency.

I. INTRODUCTION
As the age of big data evolves, cloud computing has

attracted significant attention in recent years, for its great
computing power, storage resources and services. By
out-sourcing data and/or computation tasks to the cloud, a
user can use the resources and services of cloud without
knowing the details of techniques behind. The privacy,
however, is always an issue, which stops users enjoying the
benefits of cloud techniques. To eliminate the risk of
privacy breach, many studies have been proposed in very
recent years for secured outsourcing of computation and
management. In this paper, we study the secured
outsourcing of frequent itemset mining to multi-cloud
environments for meeting the requirement of great
computational resources in big data analysis. Multi-cloud
environments in this paper refer to a set of clouds, where
each cloud has its own power of computation, storage and
framework, and performs tasks independently to the other
clouds.For the problem of secured outsourcing of frequent
item-set mining, it has been showed in previous works that the
supports associated with items and itemsets could be used to
re-identify hidden sensitive patterns, called support attacks.

in [22] proposed the concept of k-support anonymity to
limit the confidence of an item/itemset being re-identified
to 1/k by adding noise patterns. They also introduced a
taxonomy-based approach to reduce the storage overhead
for anonymization. However, how to parallelize the mining
tasks while protecting the privacy in the outsourcing of
frequent itemset mining was not addressed in their study.
Concerning the big data, we propose to incorporate
k-support anonymity into multi-cloud environments for
two-fold advantages. From the aspect of computation
efficiency, parallelizing the mining tasks on multi-cloud
environments can significantly speed up the computation;
from the aspect of security, it is more difficult for an
assailant to violate one’s privacy since the data outsourced
to a cloud can be partial.

Specifically, we aim to solve the problem of secured
outsourcing of frequent itemset mining on multi-cloud
environments. To parallelize the mining tasks, we first
segment the whole data into several overlapping parts by
sensitive items. Each part, given a partial set of sensitive
items, consists of all the transactions containing its sensitive
items, and thus provides complete support information
about its sensitive items and partial supports about the other
items. As a result, each part can calculate the frequent
patterns of items with complete supports. The complete set
of frequent patterns can be derived from the union of results
in all parts. For satisfying the k-support anonymity, we
adopt the taxonomy-based anonymization technique [22] to
build a taxonomy tree with the items of complete support
and include the items of partial support as noise.
Experimental results demonstrated that our approaches can
achieve good protection and better computation efficiency.

This paper is organized as follows. Section provides the
preliminary to our work. In Section , we introduce the
proposed algorithms. Evaluations are shown in Section .
Finally, Section concludes this work.

II. PRELIMINARY

A. Frequent pattern mining
Concerning on the co-occurrences between items in a

transactional database, the problem of frequent pattern
mining is also called frequent itemset mining basically
formalized as below.

K.H.Shabbeer Basha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 570-576

www.ijcsit.com 570

Given a set I of items, a transactional database TI contains a
set of transactions t, t ⊆ I. In the problem of frequent itemset
mining, a pattern p is a non-empty subset of I, and the support
of p, denoted as supTI (p), is the number of transactions t in TI
such that p ⊂ t. A pattern p is said frequent if its support
supTI (p) reaches a specified minimal threshold. The problem
of frequent itemset mining discovers all the frequent patterns
hidden in a transactional database TI .

Sometimes the concepts of items, however, are related.
For example, a rose can also be regarded as a flower. In the
problem of generalized frequent itemset mining, a
taxonomy tree consisting of items as it nodes is used to
describe the relationships between the concepts of items.
The leaf nodes represent the most specific concepts of items
and the root is the most general concept of all items. The
support of an internal item then comes from the occurrences
of all its descendant items. The generalized frequent itemset
mining discovers frequent patterns not only in the same
level but also across levels. Therefore, the pattern {flower,
diamond} will also be discovered if the pattern {rose,
diamond} are frequent.

In this paper, we will use generalized frequent itemset
mining to facilitate the secured outsourcing of frequent
pattern mining on multi-cloud environments.

B. k-support anonymity

K-support anonymity [22] is an effective way to protect
privacy in the outsourcing of frequent itemset mining. The
concept of k-support anonymity is to create k − 1 fake
items whose support is the same as some sensitive real
item. As there are at least k items of the same support, the
probability that an attacker can correctly re-identify the real
item is then limited to 1/k. The larger value of k is, the
higher security level is for the real items.

In this paper, we refer to the way k-support anonymity
with taxonomy tree [22], abbreviated as KAT, to achieve
k-support anonymity for privacy protection. The concept of
KAT is to generate k copies for each sensitive item so that
an attacker does not know which item is (or is not)
sensitive. In order to reduce the overhead in storage, KAT
hides both the real and fake sensitive items in a pseudo
taxonomy tree, in which support dependency exists
between child-parent items (because a specific-concept
item (such as ’rose’) can also be regarded as a type of its
parent item (such as ’flower’)). Therefore, by utilizing the
support dependency between items, KAT can increase the
occurrences of a specific-concept item to increase both the
supports of the specific-concept item (such as ’rose’) and its
relatively general-concept item (such as ’flower’).

Specifically, KAT has two main steps. The first step
constructs a pseudo taxonomy to hide the real items. In this
step, the sensitive items are first randomly divided into k
groups, and the items in each group are used to produce

a sub-taxonomy tree by leaving items in the leaf nodes of
the tree. The k sub-taxonomies are then strategically
combined to build k-bud tree that facilitates the k-support
anonymity in the second step. The second step alters the
k-bud tree and uses alteration operations insert, split, and
increase to generate fake items of specific supports. The
insert operation inserts fake items at the internal level of
the k-bud tree. The split operation raises the level of a leaf
item x by adding two fake items y and z as its child nodes
in the taxonomy, and replaces the occurrences of x in the
transactions with y or z according to the specified supports.
Finally, operation increase increases the occurrence of a
leaf item to make the support of some fake item reach a
specific value. Based on KAT, we then extend the secured
outsourcing of frequent itemset mining to multi-cloud
environments.

III. DISTRIBUTED k-SUPPORT NOISE TAXONOMY TREE

ALGORITHM
A. DKNT

In this work, we proposed a Distributed k-support Noise
Taxonomy tree algorithm, abbreviated as DKNT, to conquer
the privacy and the efficiency problems at the same time using
the multi-cloud environment. The basic idea of DKNT is to
divide the original database into overlapped partitions and send
these partitions to different cloud platforms. Each cloud is
responsible for a subset of items and DKNT will put
transactions containing these items to the partition. Therefore,
each cloud will have items which the cloud itself is responsible
for and other items in these transactions. Before sending one
partition to a cloud, DKNT will build a k-support Noise
Taxonomy tree, abbreviated as KNT, for protecting the support
privacy of all items being sent to the cloud. To protect
sensitive items which the cloud is responsible for, the
k-support anonymity tree is built first. To further protect other
items being sent to the cloud together, DKNT generates some
noise items which have similar supports to these items. After
DKNT joins these items and noise items into the k-support
anonymity tree, the k-support noise taxonomy tree is
constructed. In this way, all items being sent to the cloud are
protected. Then, DKNT transforms the original transactions
according to the k-support noise taxonomy tree and sends the
partition to the cloud. After the cloud gets the partition and the
k-support noise taxonomy tree, the cloud can compute the
generalized frequent patterns by any distributed algorithm on
the cloud. Finally, combing all partial results from all clouds,
DKNT can get the final results efficiently.

Suppose there are n cloud platforms to be utilized by
users. Let Ci be the ith cloud platform, where 1 ≤ i ≤ n. All
items in I are randomly partitioned into n groups. The set of
items being assigned to Ci is denoted by XCi , and the set of
transactions containing any item in XCi is denoted by TCi .
Since each item is assigned to one of XCi and TCi

K.H.Shabbeer Basha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 570-576

www.ijcsit.com 571

Algorithm 1 DKNT Algorithm
Require: n: number of clouds, min sup: minimum sup-

port, kanony : k-support anonymity, knoise: number of
knoise

Ensure:
C1

∼ Cn , TNC1
∼

 TNCn , M (·)C1
∼

 M (·)Cn ,
RC : all generalized frequent patterns

1: Randomly partition real items into n clouds XCi , i = 1,
..., n

2: For i from 1 to n:
3: Let TCi = collect transactions containing items in XCi
4: Let Ci = ConstructKsupAnonTree(TCi, Ci ,XCi ,kanony)
5: Let X≥ = items of XCi+ whose supports satisfy min

sup

6: Call CreateNoiseItem(X≥, knoise)
7: Let {TNCi ,

Ci , M (·)i} = ConstructKNT(TCi ,
Ci ,

X≥)
8: Send TNCi ,

Ci to Ci and get the sub result RCi
9: End for

10: Combine all sub-results and use M (·)C1
∼

 M (·)Cn to get the

final output RC

is sent to Ci, the generalized frequent itemsets containing
any items in XCi are calculated by Ci. Since all sensitive
items are divided into one of XCi and are sent to different
clouds, each cloud can only have less sensitive items, which
increases the strength of the security.

From C1 to Cn, every cloud Ci has to construct its own
distributed k-support anonymity taxonomy tree

Ci , encrypt
mapping table M (·)n, and encrypted transactions TNCi as
shown by Algorithm 1. After getting the information of TCi
and XCi, we can construct the corresponding k-support
anonymity taxonomy tree using the same method proposed in
[22]. In the k-support anonymity taxonomy tree of Ci, all
sensitive items in XCi are protected by k-support anonymity.

In addition to items in XCi , there are more items in TCi sent
together to Ci. The set of these items, which are not in XCi, is
denoted by XCi+. Some items in XCi+ are frequent and thus
may contribute to form the generalized frequent patterns with
items in XCi . These frequent items are denoted by X≥.
Because only parts of transactions containing items in X≥ are
sent to Ci, Ci can only know the partial support of items in X≥,
which also increase the difficulty of reversing the sensitive
items. To have better protection of items in X≥ from the
support attack, we propose k-noise taxonomy tree algorithm,
abbreviated as KNT, in the next section.

B. KNT

We cannot get the complete frequent patterns only by items
in XCi and k-support anonymity taxonomy tree

Ci . We have

to include items in X≥ to the taxonomy tree. Since the

transactions sent to Ci have only partial supports of items in

X≥, we do not need to create as many fake items whose

Algorithm 2 CreateNoiseItem Algorithm
Require: X: itemset from Ci, knoise
Ensure: items in X satisfy k-noise anonymity

1: For every unchecked itemj in X:
2: While Anonymity(itemj) < knoise:
3: Create a noise item itemnoise and let

Sup(itemnoise) close to Sup(itemj)
4: Put itemnoise into X
5: Mark itemnoise as checked
6: End while
7: Mark itemj as checked
8: End for

Algorithm 3 ConstructKNT Algorithm
Require: TCi : transaction form Ci,

Ci : k-bud tree of Ci,
X≥: itemset from Ci which satisfy the minimum
support, knoise: noise support of Ci

Ensure: TNCi ,
Ci , M (·)Ci

1: Let

T

NCi
=

T

Ci

2: For every item itemj in X≥:
3: Create

X≥ having a root
4: Let root.right = itemj

5: Let root.left =
Ci

6: Let
Ci =

X≥
7: End for
8: Generate an one-to-one mapping function M (·)Ci
9: Replace each item in TNCi with M (item)Ci

10: Return {TNCi ,
Ci , M (·)Ci }

supports are equal to the items in X≥ as in the k-support
anonymity taxonomy tree. Instead, we relax the definition
of k-support anonymity to k-noise anonymity, which means
there should be at least k items with similar supports in a
set. Therefore, we only generate noise items whose

supports are similar to items in X≥. In this way, many items
with similar supports could share these noise items and
achieve k-noise anonymity. The algorithm is shown in 2.
For example, if there is an item i with support 50, we can
randomly create k − 1 noise items whose supports are
between 48˜52 and put them into the set. If there are more

items in X≥ with similar supports, we can reduce the
number of generated noise items significantly.

After we get the modified set of items X≥, which satisfies
k-noise anonymity, we have to join these items into the
k-support anonymity taxonomy tree

Ci . The algorithm is
shown in 3. For each item x in X≥, we build a new k-bud tree

X≥. Let x be the right leaf of the root and let the current
Ci

as the left leaf of the root. After all the joins of items in X≥ are
completed, we generate an one-to-one mapping function M
(·)Ci and encrypt each item x in TNCi . Finally, the algorithm
outputs the encrypted transaction set together with the altered

taxonomy tree
Ci and the

T

NCi

K.H.Shabbeer Basha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 570-576

www.ijcsit.com 572

Figure 1. Item accuracy for the cases k = 20 and knoise = 20. Figure 3. Item accuracy for the cases k = 20 and α = 100%.

Figure 2. Database (DB) accuracy for the cases k = 20 and knoise = 20. Figure 4. Database (DB) accuracy for the cases k = 20 and α = 100%.

mapping function M (·)Ci . The time complexity of 3 is
O(|X≥|).

When we have TNCi ,
Ci , and M (·)Ci , we can simply send

TNCi ,
Ci , and the minimum support to Ci. When Ci get the all

encrypted transactions containing all items in XCi , Ci could apply

any generalized frequent pattern mining method to find all

generalized frequent patterns containing any items in XCi as

subresult RCi . After we receive RCi , by using M (·)Ci , we can

transform these patterns back and drop the frequent patterns with

the fake items. Then we can combine all sub-results and delete the

duplicated frequent patterns to get the final result RC .

Shamir’s Secret Sharing Scheme:
Shamir's secret sharing scheme is a threshold scheme based on

polynomial interpolation.It allows a dealer D to distribute a secret

value s to n players, such that at least nt  players are required

to reconstruct the secret. The protocol is information

theoretically secure, i.e., any fewer than t players cannot gain

any information about the secret by themselves. To share the

secret s among players nPPP ,...,, 21 such that t players are

required to reconstruct the secret.

Properties:

1. Perfect Security – information theoretic security. Given
any t shares, the polynomial is uniquely determined
and hence the secret a0 can be computed. However,
given t-1 or fewer shares, the secret can be any element
in the field and thus those shares do not supply any
further information regarding the secret.

2. Ideal – Each share is exactly the same size as the secret.

3. Extendable – additional shares may easily be created,
simply by calculating the polynomial in additional
points.

4. Flexible – can assign different weights (by the number
of shares) to different authorities.

K.H.Shabbeer Basha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 570-576

www.ijcsit.com 573

 Sharing Protocol: To share the secret s among players

nPPP ,...,, 21 such that t players are required to reconstruct

the secret

1. Dealer D creates a random polynomial f(x) of degree
t-1 and constant term s.

The polynomial is developed over a limited field, such that the
coefficient a0 is the mystery s and all different coefficients are
arbitrary components in the field; the field is known to all
members. Dealer's D publicly chooses n random distinct

evaluation points: Xj  �0, and secretly distributes to each
player Pj the share)(,()(jjj XfXsshare ), j=1…n.

(Remark: The evaluation point Xj could be any publicly known
value, therefore for our convenience, we assume jX j  ,

hence the shares are denoted as)(),...,(),...,1(nfjff)

Reconstruction Protocol:
To reconstruct the secret from each subset of t shares out of n
shares. Without loss of generality we will mark this subset:

)(),...,1(tff

1. Use Lagrange interpolation to find the unique

polynomial f(x) such that tXf )(deg and
)()(ssharejf j

 for j=1,2,..t
2. Reconstruct the secret to be f(0).

Interpolation Property: Given t pairs of))(,(ifi , with i’s all
distinct, there is a unique polynomial f(X) of degree t-1, passing
through all the points. This polynomial can be effectively

computed from the pairs))(,(ifi .

Lagrange interpolation:





t

i
i XLifxf

1

)(*)()(













ij
ji

ij
j

i xx

xx

XL
)(

)(

)(

where Li(X) is the Lagrange polynomial:
which has value 1 at Xi, and 0 at every other Xj.

Detection of Corrupted Shares:

 In an ace dynamic mystery offering framework, taking
an interest shareholders must have the capacity to verify whether
shares of different shareholders have not been ruined or lost, and
restore the right impart if important. Something else, a foe could
result in the loss of the mystery (by crushing n-(t-1) shares). The
objective in this segment is to present an instrument for location of
tainted shares.There are clear circumstances in which there is a
high likelihood that the offer is demolished, e.g. a circle crash, yet

how would anybody figure out that a programmer infiltrated
his/her machine, uncovered his/her impart and transformed it? The
thought is to spare some unique mark for each one impart that is
regular to all the shareholders, so occasionally, shareholders can
hope to measure up shares (utilizing secure telecast).

With a specific end goal to actualize the appropriated irrefutability
of shares, a fundamental peculiarity is added to the past
convention. In each one time period, every shareholder stores the
encryptions of every last one of shares he/she got from alternate
shareholders. This is accomplished as takes after:

 Perform the non-interactive VSS, so the encryption of
the initial shares will be stored at each shareholder.

 Using the homomorphic property, each i’th

shareholder updates his/her set of encrypted shares by
computing for every j:





n

m
m jPEifEihE

1

))((*))(())((
. Actually,

this product is computed using only update shares
corresponding to well behaved shareholders.

IV. EXPERIMENT

This section evaluates the security and cost effective-ness of

our approaches. The programs are implemented in P ython. All
experiments are performed on an Arch GNU/Linux server with
Intel(R) Core(TM) i7 CPU 860 @ 2.8 GHz Opteron processors
and 32GB RAM.
The testing data, T 10I1kD100k dataset, is syntheti-cally generated
by the IBM data generator. Specifically, T10I1kD100k dataset
contains 100k transactions, 1000 dif-ferent items, and about 400
frequent itemsets. The average transaction length is 10. In the
experiments, we assume all
the items are sensitive.

A. Security Analysis

To evaluate the security of our approaches, we
implemented genetic algorithm [33] to simulate attackers knowing
item support information as his background knowledge. The risk
of privacy leakage is studied from both item and database aspects
defined below: (1) item accuracy is defined as the ratio of the
items being correctly re-identified according to the attacker’s
knowledge; (2) database accuracy is the average ratio of the
content of an transaction being correctly revealed. As the impact

of k-support anonymity has been explored in [22],
First, we evaluate the privacy risk when data are par-titioned

and outsourced to different numbers of clouds. Figures 1 and 2
explore the item accuracy and database accuracy, respectively,

where α denotes the ratio of frequent items together with the
corresponding support information known to the assaulter. The
experimental results show that, from the both item and database
aspect of privacy protection, partitioning and outsourcing the data
to multi-cloud environ-ments are always better than outsourcing
the whole data to a single party, and the more partitions the data is
divided into, the better the privacy protection is. This is because
the

f(x) = a0 + a1 x + �+ at-1 x
t-1

K.H.Shabbeer Basha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 570-576

www.ijcsit.com 574

Figure 5. The overall data size of encrypted database when k = 20 and Figure 6. The overall data size of encrypted database when knoise = k.
knoise varies.

data is partial on each cloud and an assaulter who gets the
data in one cloud can never re-construct the original data.
Therefore, it is more difficult for an assailant to violate the
privacy in outsourced data. Second, we study the impact of

knoise for privacy protection. Figures 3 and 4 shows the
item and database accuracy under different values of

knoise. Generally, the privacy protection will become
stronger when more noise is introduced.

B. Cost of Encryption

In this subsection, we study the storage overhead of our
methods on the T10I1kD1000k datasets.

Figure 5 shows the storage overhead as a function of

knoise. The results show that the storage overhead

increases when knoise increases. In addition, when the
number of clouds increases, the overall data size of the

encrypted database also grows for a specific k and knoise.
This is because a transaction containing items in different
clouds will have additional copies for the clouds, i.e., one
additional copy for each cloud. Note that, however, the
burden in storage can be a relatively small cost compared to
the benefit from the computation efficiency. For example,
the computation efficiency in a 10 multi-cloud environment
could be 5 times of that in a 2 multi-cloud environment
while the data size grows only a bit.

In Figure 6, we compare the storage efficiency of our

methods to that of KAT method by setting knoise equal to
k. As expected, the more the number of clouds is, the larger
the storage overhead will be. However, as what we
explained in the experiment of Figure 5, we just earn much
more computation resources by scarifying a little storage
space.

on a pseudo-taxonomy based anonymization technique
[22], called KAT, we proposed DKNT to ensure the
privacy security for each partial data outsourced to different
clouds. Experimental results demonstrated that our
approaches can achieve good protection and better
computation efficiency, compared to the computation
efficiency on single machine.

V. CONCLUSION

In this paper, we studied the problem of secured out-sourcing
of frequent itemset mining on the multi-cloud en-vironments.
Concerning the challenges in big data analysis, we suggested to

Figure 6. The overall data size of encrypted database when knoise = k.

partition the data into several parts, and outsourced each part

independently to different cloud. Based on a pseudo-taxonomy
based anonymization technique [22], called KAT, we proposed
DKNT to ensure the privacy security for each partial data
outsourced to different clouds. Experimental results demonstrated
that our approaches can achieve good protection and better
computation efficiency, compared to the computation efficiency
on single machine.

REFERENCES

[1] C. C. Aggarwal and P. S. Yu, On static and dynamic methods for

condensation-based privacy-preserving data mining, ACM
Transactions on Database Systems, 2008.

[2] R. Agrawal and R. Srikant, Privacy-preserving data mining, In Proc.
of ACM Special Interest Group on Management Of Data, 2000.

[3] R. Buyya, C. S. Yeo, and S. Venugopal, Market-oriented cloud
computing: Vision, hype, and reality for delivering it services as
computing utilities, In Proc. of Canadian Society for the Study of
Education, pages 10-1016, 2008.

[4] L. Cao, P. S. Yu, C. Zhang, and H. Zhang, Data Mining for Business
Applications, Springer, 2008.

[5] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke, rivacy
preserving mining of association rules, In Proc. of ACM Special
Interest Group on Knowledge Discovery and Data Mining, 2002.

[6] F. Giannotti, L. V. Lakshmanan, A. Monreale,D. Pedreschi, and H.
Wang, Privacy-preserving mining of association rules from
outsourced transaction databases, In Workshop on Security and
Privacy in Cloud Computing, 2010.

[7] J. Han and Y. Fu, Discovery of multiple-level association rules from
large databases., In Proc. of Very Large Data Base, 1995.

[8] M. Kamber and J. Han, Data Mining: Concepts and Tech-niques,
Morgan Kaufmann; 2nd Edition, 2005.

[9] M. Kantarcioglu, R. Nix, and J. Vaidya, An efficient approxi-mate
protocol for privacy-preserving association rule mining, In Proc. of
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
2009.

[10] N. Li, T. Li, and S. Venkatasubramanian, t-closeness:Privacy beyond
k-anonymity and l-diversity, In Proc. of International Conference on
Data Engineering, 2007.

[11] K. Liu and E. Terzi, Towards indentity anonymization on graphs, In
Proc. of ACM Special Interest Group on Manage-ment Of Data,
2008.

[12] A. Machanavajjhala, J. Gehrke, D. Kifer, and M. Venkita-
subramaniam, l-diversity: Privacy beyond k-anonymity, ACM
Transactions on Knowledge Discovery from Data, 1(1), 2007.

K.H.Shabbeer Basha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 570-576

www.ijcsit.com 575

[13] A. Maurizio, B. Francesco, G. Fosca and P. Dino, Anonymity
preserving pattern discovery, Very Large Data Base, 2008.

[14] T. Mielik inen, Privacy problems with anonymized a trans-action
databases, In Proc. of Discovery Science, 2004.

[15] J. Pei and B. Zhou, Preserving privacy in social networks against
neighborhood attacks, In Proc. of International Con-ference on Data
Mining series, 2008.

[16] L. Qiu, Y. Li, and X. Wu, Preserving privacy in association rule
mining with bloom filters, J. Intell. Information Systems,
29(3):253278, 2007.

[17] M. D. Singh, P. R. Krishna and A. Saxena, A cryptography based
privacy preserving solution to mine cloud data, COM-PUTE, 2010.

[18] R. Srikant and R. Agrawal, Mining generalized association rules, In
Proc. of Very Large Data Base, 1995.

[19] X. Sun and P. S. Yu, A border-based approach for hiding sensitive
frequent itemsets, In Proc. of International Conference on Data
Mining series, 2005.

[20] C. H. Tai, P. S. Yu, and M. S. Chen, k-Support anonymity based on
pseudo taxonomy for outsourcing of frequent itemset mining,
Knowledge Discovery and Data Mining, 2010.

[21] W. K. Wong, D. W. Cheung, E. Hung, B. Kao, and N. Mamoulis,
Security in outsourcing of association rule mining, In Proc. of Very
Large Data Base, 2007.

[22] F. Yu, C. Zhiyuan, K. Gunes and G. Aryya, A privacy protection
technique for publishing data mining models and research data, In
Proc. of ACM Special Interest Group on Management Of Data,
2008.

[23] F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, Mining colossal
frequent patterns by core pattern fusion, In Proc. of International
Conference on Data Engineering, 2007.

[24] G. Wang, Q. Liu, F. Li, S. Yang, and J. Wu, Outsourcing Privacy-
Preserving Social Networks to a Cloud, In Proc. of IEEE
INFOCOM, 2013.

[25] F. Kerschbaum and J. Vayssiere, Privacy-Preserving Data Analytics
as an Outsourced Service, In Proc. of ACM Secure Web Services,
2008.

[26] C. Wang, S. Chow, Q. Wang, K. Ren, and W. Lou, Privacy-
Preserving Public Auditing for Secure Cloud Storage, In Proc. of
IEEE INFOCOM, 2010.

[27] M. Bentounsi, S. Benbernou, and M. J. Atallah, Privacy-Preserving
Business Process Outsourcing, In Proc. of IEEE on Web Services,
2012.

[28] K.-P. Lin and M.-S. Chen, Privacy-preserving outsourcing support
vector machines with random transformation, In Proc. of KDD,
2010.

[29] I. Molloy, N. Li, and T. Li. On the (in)security and (im)practicality
of outsourcing precise association rule mining. In Proc. of ICDM,
2009.

[30] W. K. Wong, D. W. Cheung, E. Hung, B. Kao, and N. Mamoulis.
Security in outsourcing of association rule mining. In Proc. of
VLDB, 2007.

[31] R. Spillman, M. Janssen, B. Nelson, and M. Kepner, Use of a genetic
algorithm in he crytanalysis of simple substitution ciphers,
Cryptologia, XVII(1), pp. 31-44, 1993.

[32] K.Kishore, E. Madhusudhana Reddy, (2012), “Outsourcing In Cloud
Computing Using Homomorphic Encryption Potentials”
International journal of Advanced Scientific and technical Research
(ISSN: 2249-9954), August 2012, Issue 2, Volume 4, PP 57-64.

[33] P. Suneel Kumar, E.Madhusudhana Reddy, (2012), International
Conference on Science and Information Technology (ICSIT-2012),
Organized by A STAR india, Deharadun, (June 3, 2012) PP.7-
12.ISBN:978-93-81693-92-6.Title – Dynamic Pricing Scheme for
Cloud Cache to Maximize the Service Provider.

K.H.Shabbeer Basha et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 570-576

www.ijcsit.com 576

