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Abstract— As the age of big data evolves, outsourcing 
of data mining tasks to multi-cloud environments has 
become a popular trend. To ensure the data privacy in 
outsourcing of mining tasks, the concept of support 
anonymity was proposed to hide sensitive information 
about patterns. Existing methods that tackle the privacy 
issues, however, do not address the related parallel 
mining techniques. To fill this gap, we refer to a pseudo-
taxonomy based technique, called as k-support 
anonymity, and improve it into multi-cloud 
environments with secrete sharing scheme. This has 
several advantages. First, outsourcing to multi-cloud 
environments can meet the requirement of great 
computational resources in big data mining, and also 
parallelize the mining tasks for better efficiency. 
Second, the data that we send out to a cloud can be 
partial. An assaulter who gets the data in one cloud can 
never re-construct the original data. That means it is 
more difficult for an assailant to violate the privacy in 
outsourced data. Experimental results also 
demonstrated that our approaches can achieve good 
protection and better computation efficiency. 

I.  INTRODUCTION 
As the age of big data evolves, cloud computing has 

attracted significant attention in recent years, for its great 
computing power, storage resources and services. By   
out-sourcing data and/or computation tasks to the cloud, a 
user can use the resources and services of cloud without 
knowing the details of techniques behind. The privacy, 
however, is always an issue, which stops users enjoying the 
benefits of cloud techniques. To eliminate the risk of 
privacy breach, many studies  have been proposed in very 
recent years for secured outsourcing of computation and 
management. In this paper, we study the secured 
outsourcing of frequent itemset mining to multi-cloud 
environments for meeting the requirement of great 
computational resources in big data analysis. Multi-cloud 
environments in this paper refer to a set of clouds, where 
each cloud has its own power of computation, storage and 
framework, and performs tasks independently to the other 
clouds.For the problem of secured outsourcing of frequent 
item-set mining, it has been showed in previous works that the 
supports associated with items and itemsets could be used to 
re-identify hidden sensitive patterns, called support attacks. 

in [22] proposed the concept of k-support anonymity to 
limit the confidence of an item/itemset being re-identified 
to 1/k by adding noise patterns. They also introduced a 
taxonomy-based approach to reduce the storage overhead 
for anonymization. However, how to parallelize the mining 
tasks while protecting the privacy in the outsourcing of 
frequent itemset mining was not addressed in their study. 
Concerning the big data, we propose to incorporate 
k-support anonymity into multi-cloud environments for 
two-fold advantages. From the aspect of computation 
efficiency, parallelizing the mining tasks on multi-cloud 
environments can significantly speed up the computation; 
from the aspect of security, it is more difficult for an 
assailant to violate one’s privacy since the data outsourced 
to a cloud can be partial.  

Specifically, we aim to solve the problem of secured 
outsourcing of frequent itemset mining on multi-cloud 
environments. To parallelize the mining tasks, we first 
segment the whole data into several overlapping parts by 
sensitive items. Each part, given a partial set of sensitive 
items, consists of all the transactions containing its sensitive 
items, and thus provides complete support information 
about its sensitive items and partial supports about the other 
items. As a result, each part can calculate the frequent 
patterns of items with complete supports. The complete set 
of frequent patterns can be derived from the union of results 
in all parts. For satisfying the k-support anonymity, we 
adopt the taxonomy-based anonymization technique [22] to 
build a taxonomy tree with the items of complete support 
and include the items of partial support as noise. 
Experimental results demonstrated that our approaches can 
achieve good protection and better computation efficiency.  

This paper is organized as follows. Section provides the 
preliminary to our work. In Section , we introduce the 
proposed algorithms. Evaluations are shown in Section . 
Finally, Section concludes this work. 

II. PRELIMINARY

A. Frequent pattern mining   
Concerning on the co-occurrences between items in a 

transactional database, the problem of frequent pattern 
mining is also called frequent itemset mining basically 
formalized as below. 
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Given a set I of items, a transactional database TI contains a 
set of transactions t, t ⊆ I. In the problem of frequent itemset 
mining, a pattern p is a non-empty subset of I, and the support 
of p, denoted as supTI (p), is the number of transactions t in TI 
such that p ⊂ t. A pattern p is said frequent if its support 
supTI (p) reaches a specified minimal threshold. The problem 
of frequent itemset mining discovers all the frequent patterns 
hidden in a transactional database TI .  

Sometimes the concepts of items, however, are related. 
For example, a rose can also be regarded as a flower. In the 
problem of generalized frequent itemset mining, a 
taxonomy tree consisting of items as it nodes is used to 
describe the relationships between the concepts of items. 
The leaf nodes represent the most specific concepts of items 
and the root is the most general concept of all items. The 
support of an internal item then comes from the occurrences 
of all its descendant items. The generalized frequent itemset 
mining discovers frequent patterns not only in the same 
level but also across levels. Therefore, the pattern {flower, 
diamond} will also be discovered if the pattern {rose, 
diamond} are frequent.  

In this paper, we will use generalized frequent itemset 
mining to facilitate the secured outsourcing of frequent 
pattern mining on multi-cloud environments. 
 
B.  k-support anonymity  

K-support anonymity [22] is an effective way to protect 
privacy in the outsourcing of frequent itemset mining. The 
concept of k-support anonymity is to create k − 1 fake 
items whose support is the same as some sensitive real 
item. As there are at least k items of the same support, the 
probability that an attacker can correctly re-identify the real 
item is then limited to 1/k. The larger value of k is, the 
higher security level is for the real items.  

In this paper, we refer to the way k-support anonymity 
with taxonomy tree [22], abbreviated as KAT, to achieve  
k-support anonymity for privacy protection. The concept of 
KAT is to generate k copies for each sensitive item so that 
an attacker does not know which item is (or is not) 
sensitive. In order to reduce the overhead in storage, KAT 
hides both the real and fake sensitive items in a pseudo 
taxonomy tree, in which support dependency exists 
between child-parent items (because a specific-concept 
item (such as ’rose’) can also be regarded as a type of its 
parent item (such as ’flower’)). Therefore, by utilizing the 
support dependency between items, KAT can increase the 
occurrences of a specific-concept item to increase both the 
supports of the specific-concept item (such as ’rose’) and its 
relatively general-concept item (such as ’flower’).  

Specifically, KAT has two main steps. The first step 
constructs a pseudo taxonomy to hide the real items. In this 
step, the sensitive items are first randomly divided into k 
groups, and the items in each group are used to produce 

 
a sub-taxonomy tree by leaving items in the leaf nodes of 
the tree. The k sub-taxonomies are then strategically 
combined to build k-bud tree that facilitates the k-support 
anonymity in the second step. The second step alters the     
k-bud tree and uses alteration operations insert, split, and 
increase to generate fake items of specific supports. The 
insert operation inserts fake items at the internal level of 
the k-bud tree. The split operation raises the level of a leaf 
item x by adding two fake items y and z as its child nodes 
in the taxonomy, and replaces the occurrences of x in the 
transactions with y or z according to the specified supports. 
Finally, operation increase increases the occurrence of a 
leaf item to make the support of some fake item reach a 
specific value. Based on KAT, we then extend the secured 
outsourcing of frequent itemset mining to multi-cloud 
environments. 
 
III. DISTRIBUTED k-SUPPORT NOISE TAXONOMY TREE  

ALGORITHM  
A.  DKNT  

In this work, we proposed a Distributed k-support Noise 
Taxonomy tree algorithm, abbreviated as DKNT, to conquer 
the privacy and the efficiency problems at the same time using 
the multi-cloud environment. The basic idea of DKNT is to 
divide the original database into overlapped partitions and send 
these partitions to different cloud platforms. Each cloud is 
responsible for a subset of items and DKNT will put 
transactions containing these items to the partition. Therefore, 
each cloud will have items which the cloud itself is responsible 
for and other items in these transactions. Before sending one 
partition to a cloud, DKNT will build a k-support Noise 
Taxonomy tree, abbreviated as KNT, for protecting the support 
privacy of all items being sent to the cloud. To protect 
sensitive items which the cloud is responsible for, the              
k-support anonymity tree is built first. To further protect other 
items being sent to the cloud together, DKNT generates some 
noise items which have similar supports to these items. After 
DKNT joins these items and noise items into the k-support 
anonymity tree, the k-support noise taxonomy tree is 
constructed. In this way, all items being sent to the cloud are 
protected. Then, DKNT transforms the original transactions 
according to the k-support noise taxonomy tree and sends the 
partition to the cloud. After the cloud gets the partition and the 
k-support noise taxonomy tree, the cloud can compute the 
generalized frequent patterns by any distributed algorithm on 
the cloud. Finally, combing all partial results from all clouds, 
DKNT can get the final results efficiently. 

Suppose there are n cloud platforms to be utilized by 
users. Let Ci be the ith cloud platform, where 1 ≤ i ≤ n. All 
items in I are randomly partitioned into n groups. The set of 
items being assigned to Ci is denoted by XCi , and the set of 
transactions containing any item in XCi is denoted by TCi . 
Since each item is assigned to one of XCi and TCi 
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Algorithm 1 DKNT Algorithm  
Require: n: number of clouds, min sup: minimum sup-

port, kanony : k-support anonymity, knoise: number of 
knoise 

Ensure:  
C1  

∼ Cn , TNC1  
∼

 TNCn , M (·)C1  
∼

 M (·)Cn , 
RC : all generalized frequent patterns 

1: Randomly partition real items into n clouds XCi , i = 1, 
..., n   

2: For i from 1 to n:  
3: Let TCi  = collect transactions containing items in XCi  
4: Let Ci = ConstructKsupAnonTree(TCi, Ci ,XCi ,kanony ) 
5: Let X≥ = items of XCi+ whose supports satisfy min 

sup   

6: Call CreateNoiseItem(X≥, knoise)   
7: Let {TNCi , 

Ci , M (·)i} = ConstructKNT(TCi , 
Ci ,  

X≥) 
8: Send TNCi , 

Ci  to Ci and get the sub result RCi  
9: End for  

10: Combine all sub-results and use M (·)C1 
∼

 M (·)Cn to get the 

final output RC  
 
 
is sent to Ci, the generalized frequent itemsets containing 
any items in XCi are calculated by Ci. Since all sensitive 
items are divided into one of XCi and are sent to different 
clouds, each cloud can only have less sensitive items, which 
increases the strength of the security.  

From C1 to Cn, every cloud Ci has to construct its own 
distributed k-support anonymity taxonomy tree 

Ci , encrypt 
mapping table M (·)n, and encrypted transactions TNCi as 
shown by Algorithm 1. After getting the information of TCi 
and XCi, we can construct the corresponding k-support 
anonymity taxonomy tree using the same method proposed in 
[22]. In the k-support anonymity taxonomy tree of Ci, all 
sensitive items in XCi are protected by k-support anonymity.  

In addition to items in XCi , there are more items in TCi sent 
together to Ci. The set of these items, which are not in XCi, is 
denoted by XCi+. Some items in XCi+ are frequent and thus 
may contribute to form the generalized frequent patterns with 
items in XCi . These frequent items are denoted by X≥. 
Because only parts of transactions containing items in X≥ are 
sent to Ci, Ci can only know the partial support of items in X≥, 
which also increase the difficulty of reversing the sensitive 
items. To have better protection of items in X≥ from the 
support attack, we propose k-noise taxonomy tree algorithm, 
abbreviated as KNT, in the next section. 
 
B.  KNT  

We cannot get the complete frequent patterns only by items 
in XCi and k-support anonymity taxonomy tree 

Ci . We have 

to include items in X≥ to the taxonomy tree. Since the 

transactions sent to Ci have only partial supports of items in 

X≥, we do not need to create as many fake items whose 

 
Algorithm 2 CreateNoiseItem Algorithm 
Require:  X: itemset from Ci, knoise 
Ensure:  items in X satisfy k-noise anonymity 

1: For every unchecked itemj in X:  
2: While Anonymity(itemj ) < knoise:  
3: Create   a   noise   item   itemnoise    and   let   

Sup(itemnoise) close to Sup(itemj )  
4: Put itemnoise into X  
5: Mark itemnoise as checked   
6: End while  
7: Mark itemj as checked   
8: End for  

 
Algorithm 3 ConstructKNT Algorithm  
Require: TCi : transaction form Ci, 

Ci : k-bud tree of Ci, 
X≥: itemset from Ci which satisfy the minimum 
support, knoise: noise support of Ci 

Ensure:  TNCi , 
Ci , M (·)Ci 

1: Let
 
T

NCi  
=

 
T

Ci 
  

2: For every item itemj in X≥:   
3: Create 

X≥ having a root  
4: Let root.right = itemj  

5: Let root.left = 
Ci  

6: Let 
Ci  = 

X≥  
7: End for  
8: Generate an one-to-one mapping function M (·)Ci   
9: Replace each item in TNCi  with M (item)Ci  

10: Return {TNCi , 
Ci , M (·)Ci }  

 
 
supports are equal to the items in X≥ as in the k-support 
anonymity taxonomy tree. Instead, we relax the definition 
of k-support anonymity to k-noise anonymity, which means 
there should be at least k items with similar supports in a 
set. Therefore, we only generate noise items whose 

supports are similar to items in X≥. In this way, many items 
with similar supports could share these noise items and 
achieve k-noise anonymity. The algorithm is shown in 2. 
For example, if there is an item i with support 50, we can 
randomly create k − 1 noise items whose supports are 
between 48˜52 and put them into the set. If there are more 

items in X≥ with similar supports, we can reduce the 
number of generated noise items significantly.  

After we get the modified set of items X≥, which satisfies    
k-noise anonymity, we have to join these items into the             
k-support anonymity taxonomy tree 

Ci . The algorithm is 
shown in 3. For each item x in X≥, we build a new k-bud tree 

X≥. Let x be the right leaf of the root and let the current 
Ci 

as the left leaf of the root. After all the joins of items in X≥ are 
completed, we generate an one-to-one mapping function M 
(·)Ci and encrypt each item x in TNCi . Finally, the algorithm 
outputs the encrypted transaction set together with the altered 

taxonomy tree 
Ci  and the 

 
 
T

NCi 
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Figure 1.   Item accuracy for the cases k = 20 and knoise = 20. Figure 3.   Item accuracy for the cases k = 20 and α = 100%. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Database (DB) accuracy for the cases k = 20 and knoise = 20. Figure 4.   Database (DB) accuracy for the cases k = 20 and α = 100%. 
 

mapping function M (·)Ci .  The time complexity of 3  is 
O(|X≥|).  

When we have TNCi ,  
Ci , and M (·)Ci , we can simply send 

TNCi , 
Ci , and the minimum support to Ci. When Ci get the all 

encrypted transactions containing all items in  XCi  ,  Ci could apply 

any generalized frequent pattern mining  method to find all 

generalized frequent patterns containing any items in XCi as      

subresult RCi . After we receive RCi , by using M (·)Ci , we can 

transform these patterns back and drop the frequent patterns with 

the fake items. Then we can combine all sub-results and delete the 

duplicated frequent patterns to get the final result RC . 

Shamir’s Secret Sharing Scheme: 
Shamir's secret sharing scheme is a threshold scheme based on 

polynomial interpolation.It allows a dealer D to distribute a secret 

value s to n players, such that at least nt   players are required 

to reconstruct the secret. The protocol is information 

theoretically secure, i.e., any fewer than t players cannot gain 

any information about the secret by themselves. To share the 

secret s among players nPPP ,...,, 21  such that t players are 

required to reconstruct the secret.   

 

 

 
 

 
 

 
Properties: 

1. Perfect Security – information theoretic security. Given 
any t shares, the polynomial is uniquely determined 
and hence the secret a0 can be computed. However, 
given t-1 or fewer shares, the secret can be any element 
in the field and thus those shares do not supply any 
further information regarding the secret.    

2. Ideal – Each share is exactly the same size as the secret. 

3. Extendable – additional shares may easily be created, 
simply by calculating the polynomial in additional 
points. 

4. Flexible – can assign different weights (by the number 
of shares) to different authorities. 
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  Sharing Protocol: To share the secret s among players 

nPPP ,...,, 21  such that t players are required to reconstruct 

the secret 

1. Dealer D creates a random polynomial f(x) of degree 
t-1 and constant term s. 

 

 

The polynomial is developed over a limited field, such that the 
coefficient a0 is the mystery s and all different coefficients are 
arbitrary components in the field; the field is known to all 
members.     Dealer's D publicly chooses n random distinct 

evaluation points: Xj  �0, and secretly distributes to each 
player Pj the share )(,()( jjj XfXsshare  ), j=1…n. 

(Remark: The evaluation point Xj could be any publicly known 
value, therefore for our convenience, we assume jX j  , 

hence the shares are denoted as )(),...,(),...,1( nfjff ) 

 

Reconstruction Protocol: 
To reconstruct the secret from each subset of t shares out of n 
shares. Without loss of generality we will mark this subset: 

)(),...,1( tff   
 

1. Use Lagrange interpolation to find the unique 

polynomial f(x) such that tXf )(deg    and 
)()( ssharejf j

 for j=1,2,..t 
2. Reconstruct the secret to be f(0). 

Interpolation Property: Given t pairs of  ))(,( ifi  , with i’s all 
distinct, there is a unique polynomial f(X) of degree t-1, passing 
through all the points. This polynomial can be effectively 

computed from the pairs ))(,( ifi . 
 
Lagrange interpolation: 





t

i
i XLifxf

1

)(*)()(
  













ij
ji

ij
j

i xx

xx

XL
)(

)(

)(

 
 
where Li(X) is the Lagrange polynomial:  
which has value 1 at Xi, and 0 at every other Xj.  
 
Detection of  Corrupted Shares: 
 
 In an ace dynamic mystery offering framework, taking 
an interest shareholders must have the capacity to verify whether 
shares of different shareholders have not been ruined or lost, and 
restore the right impart if important. Something else, a foe could 
result in the loss of the mystery (by crushing n-(t-1) shares). The 
objective in this segment is to present an instrument for location of 
tainted shares.There are clear circumstances in which there is a 
high likelihood that the offer is demolished, e.g. a circle crash, yet  
 
 

how would anybody figure out that a programmer infiltrated 
his/her machine, uncovered his/her impart and transformed it? The 
thought is to spare some unique mark for each one impart that is 
regular to all the shareholders, so occasionally, shareholders can 
hope to measure up shares (utilizing secure telecast).  
 
With a specific end goal to actualize the appropriated irrefutability 
of shares, a fundamental peculiarity is added to the past 
convention. In each one time period, every shareholder stores the 
encryptions of every last one of shares he/she got from alternate 
shareholders. This is accomplished as takes after: 
 

 Perform the non-interactive VSS, so the encryption of 
the initial shares will be stored at each shareholder. 

 
 Using the homomorphic property, each i’th 

shareholder updates his/her set of encrypted shares by 
computing for every j: 





n

m
m jPEifEihE

1

))((*))(())((
. Actually, 

this product is computed using only update shares 
corresponding to well behaved shareholders.  

 
IV. EXPERIMENT 

 
This section evaluates the security and cost effective-ness of 

our approaches. The programs are implemented in P  ython. All 
experiments are performed on an Arch GNU/Linux server with 
Intel(R) Core(TM) i7 CPU 860 @ 2.8 GHz Opteron processors 
and 32GB RAM.  
The testing data, T 10I1kD100k dataset, is syntheti-cally generated 
by the IBM data generator. Specifically, T10I1kD100k dataset 
contains 100k transactions, 1000 dif-ferent items, and about 400 
frequent itemsets. The average transaction length is 10. In the 
experiments, we assume all   
the items are sensitive. 
 
A.  Security Analysis 
 

To evaluate the security of our approaches, we              
implemented genetic algorithm [33] to simulate attackers knowing 
item support information as his background knowledge. The risk 
of privacy leakage is studied from both item and database aspects 
defined below: (1) item accuracy is defined as the ratio of the 
items being correctly re-identified according to the attacker’s 
knowledge; (2) database accuracy is the average ratio of the 
content of an transaction being correctly revealed. As the impact 

of k-support anonymity has been explored in [22],   
First, we evaluate the privacy risk when data are par-titioned 

and outsourced to different numbers of clouds. Figures 1 and 2 
explore the item accuracy and database accuracy, respectively, 

where α denotes the ratio of frequent items together with the 
corresponding support information known to the assaulter. The 
experimental results show that, from the both item and database 
aspect of privacy protection, partitioning and outsourcing the data 
to multi-cloud environ-ments are always better than outsourcing 
the whole data to a single party, and the more partitions the data is 
divided into, the better the privacy protection is. This is because 
the 

 
 

 
 
 

 
 
 

f(x) = a0 + a1 x + �+ at-1 x
t-1 
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Figure 5.   The overall data size of encrypted database when k = 20 and Figure 6.   The overall data size of encrypted database when knoise = k. 
knoise varies. 
 
data is partial on each cloud and an assaulter who gets the 
data in one cloud can never re-construct the original data. 
Therefore, it is more difficult for an assailant to violate the 
privacy in outsourced data. Second, we study the impact of 

knoise for privacy protection. Figures 3 and 4 shows the 
item and database accuracy under different values of 

knoise. Generally, the privacy protection will become 
stronger when more noise is introduced. 
 
B.  Cost of Encryption  

In this subsection, we study the storage overhead of our 
methods on the T10I1kD1000k datasets.  

Figure 5 shows the storage overhead as a function of 

knoise. The results show that the storage overhead  

increases when knoise increases. In addition, when the 
number of clouds increases, the overall data size of the 

encrypted database also grows for a specific k and knoise. 
This is because a transaction containing items in different 
clouds will have additional copies for the clouds, i.e., one 
additional copy for each cloud. Note that, however, the 
burden in storage can be a relatively small cost compared to 
the benefit from the computation efficiency. For example, 
the computation efficiency in a 10 multi-cloud environment 
could be 5 times of that in a 2 multi-cloud environment 
while the data size grows only a bit.  

In Figure 6, we compare the storage efficiency of our 

methods to that of KAT method by setting knoise equal to 
k. As expected, the more the number of clouds is, the larger 
the storage overhead will be. However, as what we 
explained in the experiment of Figure 5, we just earn much 
more computation resources by scarifying a little storage 
space.  

on a pseudo-taxonomy based anonymization technique 
[22], called KAT, we proposed DKNT to ensure the 
privacy security for each partial data outsourced to different 
clouds. Experimental results demonstrated that our 
approaches can achieve good protection and better 
computation efficiency, compared to the computation 
efficiency on single machine.  

 
V. CONCLUSION  

In this paper, we studied the problem of secured out-sourcing 
of frequent itemset mining on the multi-cloud en-vironments. 
Concerning the challenges in big data analysis, we suggested to 

 
 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 6. The overall data size of encrypted database when knoise = k. 

 
partition the data into several parts, and outsourced each part 

independently to different cloud. Based on a pseudo-taxonomy 
based anonymization technique [22], called KAT, we proposed 
DKNT to ensure the privacy security for each partial data 
outsourced to different clouds. Experimental results demonstrated 
that our approaches can achieve good protection and better 
computation efficiency, compared to the computation efficiency 
on single machine. 
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